

PRIVATE

Code Assessment

of the CurveCryptoSwap2ETH

Smart Contracts

April 1st, 2022

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Findings 10

6 Open Questions 16

7 Notes 17

DRAFT

Curve - CurveCryptoSwap2ETH - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Michael,

Thank you for trusting us to help Curve with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of CurveCryptoSwap2ETH
according to Scope to support you in forming an opinion on their security risks.

Curve implements a simplified pool has very similar functionality compared to Tricrypto, but is optimized
for two tokens where one token might be ETH.

This report is an intermediate report.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

DRAFT

Curve - CurveCryptoSwap2ETH - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 2

• No Response 2

Medium -Severity Findings 2

• No Response 2

Low -Severity Findings 8

• No Response 8

DRAFT

Curve - CurveCryptoSwap2ETH - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the CurveCryptoSwap2ETH repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V Date Commit Hash Note

1 Feb 07 2022 e2a59ab163b5b715b38500585a5d1d9c0671eb34 Initial Version

For the vyper smart contracts, the compiler version 0.3.1 was chosen.

2.1.1 Excluded from scope
The LiquidityGauge was not part of this audit.

2.2 System Overview
This audit focuses on changes to the Tricrypto pool that supports tokens with different prices. The
Tricrypto pool implementation has been optimized for two crypto assets, which allowed the reduction of
gas costs. These new pools are deployed through a factory which checks for correctness of certain
deployment parameters and allows for central control over some configuration parameters of those
pools. The deployed pools use non-upgradable proxy contracts. In the following we will describe the
overall system, mostly taken over from our previous Tricrypto audit.

Generally, Curve is a variant of a decentralized exchange (DEX) that relies on automated market making
(AMM). Curve and similar AMM projects build upon the concept of liquidity pools and an invariant to
determine the ratio/price to swap one coin vs another. A liquidity pool consists of multiple tokens. The
tokens are added to the pool by so called liquidity providers. In return, liquidity providers receive a token
that represents a share of the funds they own of the pool. Providing liquidity is incentivized by trading
fees that the liquidity provider will receive when users trade (the fees are paid out indirectly by increasing
the pool's value). By having a certain amount of tokens, trades can be executed immediately in one
transaction. The execution can be done immediately because no counter-party is needed.

Curve modified their function compared to e.g. Uniswap in a way that the price is more robust by
introducing a modified invariant. This is achieved by flattening the curve around the equilibrium and
shifting the curve given certain conditions are met.

2.2.1 The Pool
A pool consists of two crypto assets with the same limitations as for the previous more general case.
While most ERC20 tokens are supported, some tokens are not (see Supported Tokens).

DRAFT

Curve - CurveCryptoSwap2ETH - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2.2 The Curve
A pool always tracks the balances for both tokens. The price of the second token is denominated in the
first token.

An invariant with the following parameters defines a curve which is used to determine the prices for
trading. The parameters are D (invariant value), A (amplification factor), and gamma (which controls the
size of the flat curve area). The invariant is fully defined in Curve's documentation.

2.2.3 Profit and Conditional Price Recalculations
(unchanged)
There is a virtual price to track the development of liquidity shares. The virtual price is determined by the
value of the pool in the equilibrium. Changes of this value are used as a profit/loss indicators. Changes to
the virtual price determine whether a potential price change is accepted or not.

Many curve actions will trigger the check whether a price update should be performed. This check will
evaluate whether the currently used prices differ significantly from the internal price oracle. Before
accepting a price update, the resulting theoretical gain/loss is calculated by comparing the new updated
prices and the resulting value of the pool with the accumulated profits (interest-bearing) the pool has
made. The formula is defined in Curve's documentation in detail.

If a price update results in a loss for the pool (by the definition mentioned before) which exceeds half the
accumulated profits, the transaction would not update the prices. As a result the curve would not be
shifted but instead, a movement on the curve would happen. Hence, the exchange still works, but the flat
area of the curve is not being utilized until the price update becomes possible or the prices shift back to
the previous values.

2.2.4 The Fee Model (unchanged)
There are two kinds of fees, admin fees and dynamic fees. Admin fees occur only when the liquidity pool
accumulates funds (measured as xcp_profit). Admin fees are paid by minting new liquidity provider
token to an admin account.

Dynamic fees are paid when depositing, exchanging and withdrawing liquidity in one coin. The fee
remains in the pool, hence, increasing the value of the liquidity tokens which is the incentive to provide
liquidity. These fees depend on how close the current balances are to the equilibrium point of the curve.

2.2.5 Administration
The only role in the system is the admin. The admin of the factory is also the admin of each pool. The
admin can transfer its role to another account by calling the function commit_transfer_ownership.
The new admin can then call accept_transfer_ownership.

The curve parameters A and gamma can be changed by calling ramp_A_gamma. The change will take
place gradually (over a defined period e.g. 24h) and not at once. The change process can be stopped by
calling stop_ramp_A_gamma.

Fees and fee related parameters, the adjustment step, the moving average half-time parameter for the
price oracle and the allowed extra profit can be adjusted by calling commit_new_parameters which
allows to call apply_new_parameters after a fixed waiting period (3 days). The changes are
immediate after apply_new_parameters has been called. Alternatively, if revert_new_parameters
the proposed changes are reset.

There is no more a feature to stop (kill) the pool.

DRAFT

Curve - CurveCryptoSwap2ETH - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.6 Liquidity (unchanged)
Initially, for the exchange to work, liquidity needs to be provided. A future liquidity provider can call
add_liquidity to do so. The function pulls the funds into the exchange contract with a
transferFrom. Based on the new balances and existing prices in the pool, the curve parameter D is
calculated. D is needed to determine the amount of tokens representing the share the liquidity provider
now owns from all deposited funds in the exchange pool (called liquidity tokens). A fee is deducted and
the liquidity tokens are minted to the liquidity provider.

If D > 0 (should be the case if it is not the first deposit), the function conditionally updates the price
information and profit calculation. The condition for updating the price information and, hence, changing
the curve is that no more than half of the accumulated historic exchange profit can be lost with price
updates. The definition of profit and loss is provided in Curve's documentation. When liquidity has been
added successfully, add_liquidity emits the event AddLiquidity.

To withdraw provided tokens, a liquidity provider can call remove_liquidity or
remove_liquidity_one_coin. The functions burn the provided amount of pool liquidity tokens,
calculate the corresponding amount of tokens and transfer the tokens to the function callee.
remove_liquidity will transfer tokens from each coin in the pool's current ratio.
remove_liquidity_one_coin will payout an equivalent amount in one token. Both functions will
update D. Additionally, remove_liquidity_one_coin will deduct a fee and conditionally update the
price information.

2.2.7 Trading
Users that want to exchange two tokens can call exchange (or exchange_underlying or
exchange_extended). The user needs to provide the information about which tokens shall be
exchanged, provide the amount to be exchanged and specify a minimum amount of tokens to be
received. Usually, the exchange function pulls the funds to be exchanged into the exchange contracts via
a transferFrom. Alternatively, a callback can be specified through which the funds will be provided.
Then, it calculates how many tokens the user will receive, deducts the fees and transfers the resulting
amount to the user.

As described above, the function conditionally updates the price information and profit calculation. When
the trade was successful, the event TokenExchange is emitted.

2.2.8 Miscellaneous
The code has multiple checks for unsafe parameters. These unsafe parameters were obtained by
fuzzing. They serve as sanity checks but don't ensure that all curves created with these parameters are
safe.

DRAFT

Curve - CurveCryptoSwap2ETH - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

DRAFT

Curve - CurveCryptoSwap2ETH - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

DRAFT

Curve - CurveCryptoSwap2ETH - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings
In this section, we describe our findings. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 2

• Fees During Unbalanced Withdrawal

• Oracle Manipulation and the Consequences

Medium -Severity Findings 2

• Potential to Reinitialize Pool Storage

• Trade Fees Can Be Avoided

Low -Severity Findings 8

• Caching Fee Receiver to Save Gas

• Callback Branch Decides on Function Signature Instead of Presence of Callback Address

• Fallback Function Does Not Prevent User Errors

• LP Token burnFrom Variables Are Confusing

• Potential Inability to Trade or Add Liquidity

• Repeated Exponentiation

• State Changes When All Liquidity Is Burned

• Token Amount Calculation Reverts for Empty Pools

5.1 Fees During Unbalanced Withdrawal
Correctness High Version 1

First Finding:

In all other cases where fees are calculated the dynamic fees are calculated based on the resulting state
of the pool. However, in case of an unbalanced withdrawal (remove_liquidity_one_coin) the fees
are determined based on the initial state of the curve. This has the following consequences:

1. It is too cheap to bring the pool from a balanced to an unbalanced state

2. It is too expensive to bring the pool from a unbalanced to an balanced state

3. Removing one coin from a pool gives a higher output than performing a balanced removal and then
trading for the one coin, even though those sequences should be roughly equivalent

DRAFT

Curve - CurveCryptoSwap2ETH - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

Second Finding:

During the execution of remove_liquidity_one_coin the fee is charged on the change in the
invariant D:

fee: uint256 = self._fee(xp)
dD: uint256 = token_amount * D / token_supply
D -= (dD - (fee * dD / (2 * 10**10) + 1))

However, there is a non-linear connection between the change in the invariant D and the change in the
underlying token that is withdrawn. Hence, when measured in the underlying token the actually charged
fee can be significantly below the minimum fee defined as mid_fee. As a consequence the pool does
not receive those fees.

5.2 Oracle Manipulation and the Consequences
Security High Version 1

The pools use a time-weighted average price as an internal oracle. This oracle can be manipulated
relatively easily for the following reasons:

1. It only takes into account the last trade within a block

2. For the last trade it remembers the average price of the trade and not its resulting point on the
curve.

3. Due to points 1 and 2 trading to an imbalanced state and back to the start state of the pool,
influences the price oracle. This is because only the second trade of that pair is considered and as
its average price will significantly differ from the spot price at the start state of the pool.

4. As a consequence of step 3 price oracle manipulations are possible without the risk of being
arbitraged and can make use of flash loans as they can be paid back.

5. Such a pair of trades can be injected at the of all blocks where the attacker observes activity for the
victim pool.

Hence, overall a fairly cheap manipulation of the price oracle is possible. This is because the attacker will
not be arbitraged (when compared to a Uniswap TWAP manipulation) and all regular pool activity can be
blocked from influencing the oracle. Hence, a cheap manipulation over a longer time is possible which
ultimately results in great control over the time-weighted average price. The only costs are the trading
fees. However, as the price oracle does not factor in any trades that happened within the same block, it is
impossible to manipulate and benefit within a single block.

Consequences

The lp_price function can be used by integrators, such as other DeFi protocols, to measure the value
of an LP token, denominated in the first token. However, this value is susceptible to price manipulation. It
works as follows:

def lp_price() -> uint256:
 return 2 * self.virtual_price * self.sqrt_int(self.internal_price_oracle()) / 10**18

Hence, it makes use of the internal price oracle, which is fundamentally a time-weighted average price.
As explained above, the internal oracle can be manipulated. Then, the overall attack can take place as
follows:

DRAFT

Curve - CurveCryptoSwap2ETH - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

1. Attacker trades back and forth at the end of a block. This will record the exchange price of the
second trade for later use inside the oracle. However, this price will not match the final state of the
pool, but rather the slope that was used to reach this final state.

2. Attacker waits as time passes and hence the manipulated price rises in importance.

3. Attacker back-runs any other regular trades with fake trades as in step 1.

4. Eventually trigger the code that relies on lp_price and benefit from its incorrectness.

5.3 Potential to Reinitialize Pool Storage
Security Medium Version 1

The pool storage is initialized using the following function:

@external
def initialize(
 A: uint256,
 gamma: uint256,
 mid_fee: uint256,
 out_fee: uint256,
 ...
):
 assert self.mid_fee == 0 # dev: check that we call it from factory

 self.factory = msg.sender

 ...

Hence, mid_fee is used to check whether the storage has been initialized already or not. However,
mid_fee can be set to zero again through commit_new_parameters and apply_new_parameters.
Once that happens, anyone can re-initialize the storage and thereby (among other things) control the
admin and the admin fees.

5.4 Trade Fees Can Be Avoided
Correctness Medium Version 1

If a pool is currently not in the equilibrium state (as defined by price_scale), then the trade fees can be
avoided when trading towards the equilibrium. This is as follows possible:

DRAFT

Curve - CurveCryptoSwap2ETH - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

We assume that the blue X represents the initial pool state. The attacker can move the pool to the green
cross, and hence perform a trade, without paying the trading fees. The steps are:

1. The attacker adds liquidity in the balance as defined by the price_scale. Hence the pool state
moves to the orange X. During this step only the much smaller NOISE_FEE is paid as a fee as it is
a balanced addition.

2. The attacker removes liquidity using remove_liquidity. Hence, no fee is paid. However, the
liquidity is removed according to the current pool balances which are different from the ratio of
price_scale. Hence, the resulting state is the green cross.

Hence, overall a trade occurred, but the attacker only paid the small NOISE_FEE and not the trade fee.
As a consequence the pool misses out on those fees. However, it only works if the attacker has access to
the tokens needed for the additional liquidity.

5.5 Caching Fee Receiver to Save Gas
Design Low Version 1

Trades, liquidity additions and unbalanced liquidity removals can trigger the execution of
_claim_admin_fees. As part of that, the fee receiver's address is queried:

receiver: address = Factory(self.factory).fee_receiver()

This query is fairly gas-expensive, as it involves the penalty of calling a previously unused contract. This
penalty could be avoided if the variable was cached inside the pool contract along with a trustless
function to update it by querying the factory.

5.6 Callback Branch Decides on Function
Signature Instead of Presence of Callback Address
Design Low Version 1

DRAFT

Curve - CurveCryptoSwap2ETH - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

Inside the _exchange function of the CurveCryptoSwap2ETH contract there is the following code:

if callback_sig == EMPTY_BYTES32:
 ...
else:
 b: uint256 = ERC20(in_coin).balanceOf(self)
 raw_call(
 callbacker,
 concat(slice(callback_sig, 0, 4), _abi_encode(sender, receiver, in_coin, dx, dy))
)

The goal is to only execute a callback if the user intended to do so. A user who wants to call a function
with the 0x00000000 signature, perhaps to save gas, has to append non-zero bytes after the inital 4
bytes to pass this check, which is counter-intuitive.

5.7 Fallback Function Does Not Prevent User
Errors
Design Low Version 1

The default fallback function for the crypto pools accepts any input, including value transfers with ETH.
Here, it doesn't differentiate whether the pool has ETH as one of its tokens. Furthermore, it also accepts
ETH if calldata is present even though this might indicate an incorrect call, which e.g. was supposed to
be a trade, but where the interface was specified with a small mistake.

5.8 LP Token burnFrom Variables Are Confusing
Design Low Version 1

The Curve LP token implementation contains a function:

def burnFrom(_to: address, _value: uint256)

in which the _to parameter specifies the address from which tokens are burned from. This naming is
confusing and renaming the parameter to _from might make the purpose clearer.

5.9 Potential Inability to Trade or Add Liquidity
Security Low Version 1

In case the following situation ever takes place, the pool becomes "deadlocked":

1. A Ramping is going on

2. All or almost all liquidity is burned

From now on, no more liquidity can be added back and no trades can take place as the computation of
newton_D and newton_y will revert. The only way to release this deadlock is to gift funds and claim
admin fees which only works if there is a small amount of LP tokens left.

However, as this scenario only occurs when there are very little funds left, the impact is very small.

DRAFT

Curve - CurveCryptoSwap2ETH - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

5.10 Repeated Exponentiation
Design Low Version 1

The token precisions are calculated upon access through exponentiation:

def _get_precisions() -> uint256[2]:
 p0: uint256 = self.PRECISIONS
 p1: uint256 = 10 ** shift(p0, -8)
 p0 = 10 ** bitwise_and(p0, 255)
 return [p0, p1]

As only two precisions are stored and as the maximum precision value is 10**18, the exponentiations can
be performed once as part of the initialization. Hence, a slight gas cost saving is possible.

5.11 State Changes When All Liquidity Is Burned
Correctness Low Version 1

In case all liquidity is removed and thereby, all liquidity tokens are burned, then the next
add_liquidity operation will again trigger the following snippet:

self.D = D
self.virtual_price = 10**18
self.xcp_profit = 10**18

1. The xcp_profit_a variable is not reset. Hence, admin fee are essentially disabled until the
previous xcp_profit is reached again.

2. The not_adjusted variable is not reset. Hence, some gas might be wasted inside the
tweak_price function.

5.12 Token Amount Calculation Reverts for Empty
Pools
Correctness Low Version 1

The function calc_token_amount of the swap contract should predict how many liquidity tokens will be
received when adding specific amounts of liquidity. However, it is incorrect if queried when the
totalSupply of the associated token is 0. In that case, which is true for the first liquidity addition, the
function calc_token_amount will revert while adding liquidity will work fine.

DRAFT

Curve - CurveCryptoSwap2ETH - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

6 Open Questions
Here, we list open questions that came up during the assessment and that we would like to clarify to
ensure that no important information is missing.

6.1 Factory Events
Open Question Version 1

1. Do you foresee any situations where the factory's events should be indexed? As an example:
Filtering for the event that created a particular token to find initial deployment values?

2. Are you aware that the pool address is not part of the CryptoPoolDeployed event?

DRAFT

Curve - CurveCryptoSwap2ETH - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Possible Price Manipulations and
Inaccuracies
Note Version 1

As stated in a previous report, we see the following price manipulations as possible:

1. Pushing price_scale towards price_oracle: In case a user wants to perform a larger
exchange and the price inside the price_oracle is significantly better for that exchange than the
price inside price_scale, then the user can push the price_scale towards price_oracle
using small trades. This works as the update for price_scale only depends on its distance to
price_oracle and not on previous actions within the same block.

2. The price_oracle is only affected by the last price seen in each block. Hence, previous
exchanges can be "hidden" from the price_oracle if they are followed by other exchanges with a
different rate. Note that these trailing exchanges can be way smaller. Such trailing exchanges, if
reliably inserted, allow full control over the price_oracle and thereby (as mentioned in the
previous comment) also over price_scale.

3. In low-volume pools the oracle price might be outdated as trades only incur irregularly. Hence, all
dependent values might also be outdated.

7.2 Splitting Into Multiple Operations
Note Version 1

Due to the dynamic fee structure, it is beneficial in terms of curve fees to split up an operation into smaller
operations in the following cases:

• Trading from one side of the equilibrium to the other side

• Trading away from the equilibrium

• Adding unbalanced liquidity moving the pool further away from the equilibrium

• Adding unbalanced liquidity moving the pool across the equilibrium

In those cases, assuming no changes in price_scale, curve fees can be saved by splitting one
operation into multiple. This would lead to a loss of fees for the pool. However, in many of those cases
the higher transaction costs will outweigh the saved curve fees.

7.3 Supported Tokens
Note Version 1

DRAFT

Curve - CurveCryptoSwap2ETH - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

There is are variety of different token implementations on the Ethereum blockchain. Using tokens with
unusual behavior will lead to unexpected changes of the pool or put the smart contracts into a bad state.
In particular, the following token types will not work:

• rebasing tokens, where balances can change without transfers. These tokens in particular include
deflationary tokens and will lead to incorrect accounting

• tokens with transfer fees. These tokens will lead to incorrect accounting

• tokens with incorrect ERC20 implementations

• tokens with more than 18 decimals

• tokens with extremely high total supply. These tokens can lead to arithmetic overflows.

DRAFT

Curve - CurveCryptoSwap2ETH - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 The Pool
	2.2.2 The Curve
	2.2.3 Profit and Conditional Price Recalculations (unchanged)
	2.2.4 The Fee Model (unchanged)
	2.2.5 Administration
	2.2.6 Liquidity (unchanged)
	2.2.7 Trading
	2.2.8 Miscellaneous

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Fees During Unbalanced Withdrawal
	5.2 Oracle Manipulation and the Consequences
	5.3 Potential to Reinitialize Pool Storage
	5.4 Trade Fees Can Be Avoided
	5.5 Caching Fee Receiver to Save Gas
	5.6 Callback Branch Decides on Function Signature Instead of Presence of Callback Address
	5.7 Fallback Function Does Not Prevent User Errors
	5.8 LP Token burnFrom Variables Are Confusing
	5.9 Potential Inability to Trade or Add Liquidity
	5.10 Repeated Exponentiation
	5.11 State Changes When All Liquidity Is Burned
	5.12 Token Amount Calculation Reverts for Empty Pools

	6 Open Questions
	6.1 Factory Events

	7 Notes
	7.1 Possible Price Manipulations and Inaccuracies
	7.2 Splitting Into Multiple Operations
	7.3 Supported Tokens

