

PUBLIC

Code Assessment

of the PegKeeperV2

Smart Contracts

Decemeber 12, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Resolved Findings 12

7 Informational 14

8 Notes 15

Curve - PegKeeperV2 - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Curve Team,

Thank you for trusting us to help Curve with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of PegKeeperV2 according to
Scope to support you in forming an opinion on their security risks.

Curve implements PegKeeperV2 a more fine-grained version of PegKeeper. The goal of PegKeeperV2 is
to maintain the peg of CRVUSD in its stablepools by adding or removing liquidity in the form of CRVUSD.

The most critical subjects covered in our audit are the correct implementation of the PegKeeperV2 and
the PegRegulator, the handling of assets by the PegKeeper, and attack vectors based on the
manipulation of the liquidity and price oracles. No major issues were uncovered during the review. All the
issues have been addressed. Security regarding all the aforementioned subjects is high.

The general subjects covered are access control, gas efficiency, documentation, and specification and
testing. The security regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Curve - PegKeeperV2 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 2

• Code Corrected 2

Curve - PegKeeperV2 - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the PegKeeperV2 repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 27 Oct 2023 41f44f25d8a303ef1d399e43b8a37400b92c16be Initial Version

2 11 Dec 2023 5a46bb9c1f43b7d4062127b9919e3c2ed366ad34 Fixes

For the Vyper smart contracts, the compiler version 0.3.9 was chosen.

The following contracts are in scope of this review:

• contracts/stabilizer/PegKeeperV2.vy

• contracts/stabilizer/PegKeeperRegulator.vy

2.1.1 Excluded from scope
Excluded from the scope are the contracts not explicitly mentioned in scope. In particular, the stablecoin
(CRVUSD) implementation, the pools and the price oracles with which the contracts in scope interact are
considered to function correctly. We assume that read-only reentrancy attack vectors cannot manipulate
the virtual price retrieved from Pool.get_virtual_price(). Moreover, there is an implicit
assumption in the system that it will always recover its peg (see calc_profit()). We take this
assumption for granted. The parameters of the system were chosen based on statistical analyses of
historical data. In this report, these parameters were assumed to be correct. The contracts in scope
implement a stricter version of contracts/stabilizer/PegKeeper.vy. This contract is assumed to
function correctly. Behaviors of the PegKeeper replicated in PegKeeperV2 are assumed to be correct.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Curve offers the PegKeeperV2 and the PegKeeperRegulator which improve on the mechanism
implemented by PegKeeper. The PegKeeper is a component of the Curve stablecoin. Its goal is to
maintain the peg of the CRVUSD in its stablepools e.g., the CRVUSD/USDC pool. To that end, the peg
keeper holds an amount of CRVUSD that is added or removed from the stable pool. In particular, when
the stable pool holds more USDC than CRVUSD, it adds CRVUSD to the system. When there's an
excessive amount of CRVUSD in the pool, the peg keeper will remove some of it by burning part of the
respective LPs it holds.

Curve - PegKeeperV2 - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2.1 Issues with the PegKeeper
In this section, we present a few potential issues that have been previously identified regarding the
original PegKeeper.

Spam Attack:

The PegKeeper can be prevented from properly updating its position in the pool, if it's sandwiched by
transactions that manipulate the liquidity of the pool back and forth. Even though this attack is not
profitable for the attacker, the issue is addressed to make the protocol more resilient. To that end, the
price oracle of the stable swap is used to verify that the spot pool's price is close to the one reported by
the exponential time-weighted price given by the oracle. The allowed deviation is 0.05%.

Depeg:

Let's assume a CRVUSD/USDC pool. In case USDC loses its peg, a large amount of USDC will flow into
the CRVUSD/USDC pool. In this case, the PegKeeper will add more liquidity to keep the peg. Should the
price of USDC not return to $1, the assets of the PegKeeper will remain locked in the pool. Hence,
there's a need to limit the exposure of the PegKeeper's assets as much as possible. We specify a
PegKeeper per pool.

We define the debt ratio as follows:

ri = debt
limit

Where is the amount of liquidity given by the PegKeeper to Pool and is the maximum amount
that could be given. As a result, . Two more constraints are defined:

• One PegKeeper can use up to

• Three PegKeepers can use in limit whole i.e.,

Using the constraints above we derive the following formula for the maximum debt ratio allowed for
PegKeeper .

maxi = (α + β ⋅ ∑
j ≠ i

√ rj)2

where constants, is the debt ratio of the other PegKeepers. Note for a single Pegkeepr the
first constraint is met i.e., . For 3 or more peg keepers which use the maximum
debt ratio,

2.2.2 Implementation Details
The PegKeeperV2 implements the following interface:

• update: it can be called by any user and executed successfully as long as the peg keeper can
make a profit and gets an allowance from the regulator to add or remove liquidity. At the end of
the transaction parts of the profit of the Keeper goes to the caller. The rest of the profits can be
redeemed by anyone on behalf of a receiver.

• withdraw_profit: it can be called by anyone and transfers the assets to a receiver specified
by the contract.

Admin interface:

The following methods can only be called by the admin of the contract:

• set_new_caller_share: sets the part of profits sent to the caller of update. It sanitizes the
value.

• set_new_regulator: sets a new regulator.

Curve - PegKeeperV2 - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• commit_new_admin: sets a new admin who can claim the administration of the contract within
a deadline.

• apply_new_admin: can be called by the new admin within the time window defined by the
contract.

• set_new_receiver: sets a new receiver of the profits.

The PegKeeperRegulator implements the following interface:

• provide_allowed: it determines the allowed amount that can be provided by the peg keeper.
It returns 0 if:

1. CRVUSD price is less than or equal to 1 or,

2. the price reported by the oracle deviates from the price of the pool or,

3. the price of CRVUSD against the peg asset is greater than the other stable pools.

• withdraw_allowed: it determines the allowed amount that can be withdrawn by the peg
keeper. It returns 0 if:

1. CRVUSD price is greater than or equal to 1 or,

2. the price reported by the oracle deviates from the price of the pool

Admin interface:

The following methods can only be called by the admin of the contract:

• [add|remove]_peg_keepers: adds or removes pegkeepers.

• set_[price_deviation | debt_parameters]: sets the relevant parameters of the
system.

• set_killed: (un)pauses the deposits and/or the withdrawals from the system.

• set_[emergency_]admin: it sets the (emergency) admin in one step.

2.2.3 Roles and Trust Model
We derive the following roles for the contracts in scope:

• End users: they can call PegKeeper.update() as long as the system is not paused.

• The PegKeeperV2 admin: For the actions they can perform please refer to the Implementation
Details section. The admin is set during the construction of the contract and can change after an
admin's action. The role is assumed to be controlled by the Curve DAO and considered fully
trusted.

• The PegKeeperRegulator admin: For the actions they can perform please refer to the
Implementation Details section. The admin is set during the construction of the contract and can
change after an admin's action. The role is assumed to be controlled by the Curve DAO and
considered fully trusted.

• The PegKeeperRegulator emergency admin: They can pause deposits or withdrawals. The role
is assumed to be controlled by a trusted entity within the Curve DAO and considered fully
trusted.

No user's funds should be held and handled by the contracts.

None of the smart contracts is upgradeable. The system relies heavily on oracles to make decisions so
oracles are considered fully trusted and up-to-date. Moreover, CRVUSD implementation as well as the

Curve - PegKeeperV2 - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

LLAMMA mechanism are considered to work correctly. Any issue related to them could completely break
the contracts under scope.

2.2.4 Changes in Version 2
The following changes are implemented:

• LAST_PRICE_THRESHOLD constant was replaced by the worst_price_threshold settable
by the admin.

• peg_keeper_i is used to access to current pegkeeper info in constant time.

Curve - PegKeeperV2 - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Curve - PegKeeperV2 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Curve - PegKeeperV2 - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Curve - PegKeeperV2 - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 2

• Code CorrectedMissing Events

• Code CorrectedMissing Sanity Checks

6.1 Missing Events
Design Low Version 1 Code Corrected

CS-CRVPKV2-003

The following methods of the PegKeeperRegulator do not emit any event.

1. set_price_deviation()

2. set_debt_parameters()

3. set_killed()

4. set_emergency_admin()

Moreover, setting a new admin, price_deviation, debt_parameters or emergency_admin in the
constructor of PegKeeperRegulator, does not emit an event.

Code corrected:

The following events have been added:

1. set_price_deviation emits a PriceDeviation event.

2. set_debt_parameters emits a DebtParameters event.

3. set_killed emits a SetKilled event.

4. set_emergency_admin emits a SetEmergencyAdmin event.

Moreover, the constructor emits now all the respective events.

6.2 Missing Sanity Checks
Design Low Version 1 Code Corrected

CS-CRVPKV2-004

The following sanity checks could be applied:

Curve - PegKeeperV2 - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

1. PegKeeperV2.commit_new_admin() does not check that _new_admin is non-zero.

2. PegKeeperV2.set_new_regulator() does not check that _new_regulator is non-zero.
Moreover, it is not guaranteed that the new regulator set will implement the interface required.

3. PegKeeperRegulator.add_peg_keeper() does not check if the new keepers to be added
are not already part of the peg_keepers. Moreover, the _peg_keepers array could have
duplicates.

Code corrected:

1. _new_admin is checked to be non-zero.

2. _new_regulator is checked to be non-zero.

3. add_peg_keeper() checks if the peg keeper has already been added.

Curve - PegKeeperV2 - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Gas Optimizations
Informational Version 1

CS-CRVPKV2-001

The following gas optimizations could be applied:

1. PegKeeperV2.apply_new_admin(): self.new_admin_deadline is read twice from
storage but it could be cached.

2. PegKeeperV2._withdraw(): the function reads self.debt twice from storage but it could
be cached.

3. PegKeeperRegulator.withdraw_allowed(): This function is expected to be called often.
Therefore, it could make sense to be able to store the peg keepers in a map so that their info
can be retrieved in :math:O(1) instead of :math:O(n).

Code corrected:

The optimizations are implemented as follows:

1. self.new_admin_deadline is cached in new_admin_deadline.

2. self.debt is cached in debt.

3. peg_keeper_i is introduced to allow access to peg keeper info in constant time.

7.2 Redundant Events
Informational Version 1

CS-CRVPKV2-002

The following methods of the PegKeeperV2 emit a redundant event should the same parameters are
set.

1. set_new_caller_share()

2. set_new_regulator()

3. commit_new_admin()

4. set_new_receiver()

The method set_admin() of the PegKeeperRegulator emits a redundant event should the same
admin be set.

Curve - PegKeeperV2 - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 TVL Manipulation
Note Version 1

While the new system prevents price manipulation with the use of oracles through the regulator, it might
still be possible to manipulate the TVL of a pool to trick the PegKeeper into providing more crvUSD than it
should. Such manipulation could look like the following:

1. Provide a large amount of both assets to the pool in a balanced way.

2. Call the PegKeeper to provide crvUSD, the result of
(balance_peg - balance_pegged) / 5 will be inflated.

3. Remove the previously provided assets from the pool.

Curve - PegKeeperV2 - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Issues with the PegKeeper
	2.2.2 Implementation Details
	2.2.3 Roles and Trust Model
	2.2.4 Changes in Version 2

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Missing Events
	6.2 Missing Sanity Checks

	7 Informational
	7.1 Gas Optimizations
	7.2 Redundant Events

	8 Notes
	8.1 TVL Manipulation

