

PUBLIC

Code Assessment

of the Curve ETH/sETH

Smart Contracts

September 27, 2021

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 4

3 Limitations and use of report 7

4 Terminology 8

5 Findings 9

6 Resolved Findings 11

7 Notes 13

Curve.Finance - Curve ETH/sETH - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Curve Team,

First and foremost we would like to thank you for giving us the opportunity to assess the current state of
your Curve ETH/sETH contract. This document outlines the findings, limitations, and methodology of our
assessment.

We hope that this assessment helps to improve the project further. Our assessment uncovered one
medium security issue concerning a reentrancy for the administrator account and some low severity
findings which we describe in our findings section. We are happy that issues like the redundant use of
RATES and PRECISION, helped to make the code more efficient and significantly reduced the code size.
We performed multiple independent tests to uncover potential inefficiencies or discrepancies between
specific operations like sandwiching exchanging coins vs. adding and removing liquidity in one coin - but
we could not uncover major problems.

We warmly appreciate questions and feedback to improve our service.

Yours sincerely,

ChainSecurity

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Code Corrected 1

Low -Severity Findings 5

• Code Corrected 3

• Risk Accepted 2

Curve.Finance - Curve ETH/sETH - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

2 Assessment Overview
In this section we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope
The general scope of the assessment is set out in our engagement letter with Curve.Finance dated
November 02, 2020. The assessment was performed on the source code files inside the Curve
ETH/sETH repository based on the documentation files. The table below indicates the code versions
relevant to this report and when they were received.

V Date Commit Hash Note

1 02 Nov 2020 8ad854eb6c1e95ffb4fc375d4359d4e140569d5a Initial Version

2 15 Dec 2020 2428dd6c809a3e5bcf31285e3deb5c68eda4e55e Updated Version

Initially, for the Vyper smart contracts, the compiler version 0.2.7 was chosen. The compiler was
updated after the intermediate report to version 0.2.8.

2.1.1 Excluded from scope
The sETH token is treated as a regular ERC-20 token for the sake of the report. Furthermore, Curve's
Liquidity Provider-Token is assumed to be a regular ERC-20 token with proper access control.
Additionally, the security of the DAO that can perform admin operations on this pool is out of scope.
Lastly, the underlying mathematical formulas, as described in the whitepaper, have already been
checked separately.

2.2 System Overview
The reviewed project consists of one smart contract StableSwapETH.vy written in the Vyper
programming language. It implements a liquidity pool based on an invariant called StableSwap and
described in Curve's whitepaper.

2.3 Modifying Liquidity
Users can modify the liquidity of the pool in the following ways:

1. Add liquidity to the pool (add_liquidity).

2. Remove liquidity in a balanced manner (remove_liquidity). The users determine the number of
lp_tokens they want to remove. The liquidity of each token is reduced proportionally to the number of
the lp_tokens.

3. Remove liquidity in an imbalanced manner (remove_liquidity_imbalance). The users
determines the amount of tokens they want to remove instead of the number of lp_tokens.

4. Remove liquidity of one coin (remove_liquidity_one_coin). The functionality is similar to
remove_liquidity_imbalance with other coins set to zero, but it is more gas efficient and the
user only pays fees in the removed coin.

Curve.Finance - Curve ETH/sETH - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2.4 Determining the invariant D
D is determined by the mathematical formula. It is calculated iteratively. The maximum iterations allowed
are 255. D changes when:

1. Liquidity is added to the pool (add_liquidity)

2. Liquidity is removed from the pool (remove_liquidity, remove_liquidity_imbalance,
remove_liquidity_one_coin)

3. When A changes due to ramp_A (see below)

It should not change after an exchange.

2.5 Setting and Updating the Amplification
Coefficient A
The amplification coefficient A is set in the constructor and can be modified by the owner of the contract.
The provided value should equal to A * n**(n-1). The value of A can be changed by the owner using
ramp_A. The new value of the coefficient cannot be more than ten times greater or smaller than its
current value. The update takes place gradually. An update lasts MIN_RAMP_TIME. During this time
window, the change in the value of A is proportional to the percentage MIN_RAMP_TIME which has
passed. Note that the owner can stop the update by calling stop_ramp_A.

2.6 Fees
Two kind of fees are applied. One fee remains in the contract and goes towards the liquidity provider by
increasing the amount they can withdraw with the same amount of lp_tokens. The other fee is an admin
fee. Admins can withdraw their share or donate their share to the pool. Both fees are percentages. In the
functions add_liquidity, remove_liquidity_imbalance and remove_liquidity_one_coin
fees are applied as well while in remove_liquidity a fee is not applied. The fee, where applicable,
comes as percentage of difference between a balanced change of the liquidity and the real change.

2.7 Administrator actions
The administrator i.e., the owner of the contract can perform the following exclusive actions:

1. Change the value of the amplification coefficient A (ramp_A) and stop the ramping (stop_ramp_A).

2. Change the fees (commit_new_fee). This is just a commitment. The network is notified for the
change, however, the change is not applied directly.

3. Apply the new fees (apply_new_fee).

4. Revert the change in the fees (revert_new_parameters).

5. Transfer ownership (commit_transfer_ownership). This is just a commitment. The network is
notified for the change, however, the change is not applied directly.

6. Apply the ownership transfer (apply_transfer_ownership)

7. Withdraw admin fees (withdraw_admin_fees)

8. Donate admin fees (donate_admin_fees). The owner gives up on the surplus between the real
balance of the tokens in the contract and the balance held by self.balances.

9. Freeze the contract (kill_me) and unfreeze the contract (unkill_me)

Curve.Finance - Curve ETH/sETH - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.8 Killed (Frozen) Contract Functionalities
A contract can be killed until after 60 days from its deployment. When a contract is in a killed state only
the following calls are blocked:

1. add_liquidity

2. remove_liquidity

3. remove_liquidity_imbalance

4. remove_liquidity_one_coin

5. exchange

Curve.Finance - Curve ETH/sETH - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

Curve.Finance - Curve ETH/sETH - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Curve.Finance - Curve ETH/sETH - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved, have been moved to
the Resolved Findings section. All of the findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 2

• Risk AcceptedCertain Inputs Unchecked in Constructor

• Risk AcceptedRamping Down Might Incentivize Delayed Liquidity

5.1 Certain Inputs Unchecked in Constructor
Security Low Version 1 Risk Accepted

When new fees are committed through the commit_new_fee function they are checked against the
respective maximum values to prevent mistakes. However, when the fees are initially set inside the
constructor no such check is performed. Hence, initial fees might be outside the permitted value range.

Similarly, when the amplification factor is changed through ramping, it's value range is checked.
However, during the constructor this check for the amplification factor does not take place.

Risk accepted: As deployment is a rare event and as deployed contracts will be checked by the
development team, there is no immediate need to add these checks. An incorrect contract can be "killed".

5.2 Ramping Down Might Incentivize Delayed
Liquidity
Design Low Version 1 Risk Accepted

While the amplification factor is ramping down in an imbalanced pool, liquidity providers have an
incentive to wait before providing extra liquidity. This is because they will receive more liquidity tokens in
the future for the same liquidity. In the extreme case of a maximally sharp ramp down and a very
imbalanced pool, waiting for ten minutes provides roughly 0.14% additional liquidity tokens.

However, this only holds as long as no further fees are accumulated during this time and as long as no
re-balancing takes place inside the pool and hence constitutes a fairly unlikely scenario.

Curve.Finance - Curve ETH/sETH - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

Risk accepted: As mentioned above this only applies for very sharp ramps. As the DAO will control the
parameter of these ramps, the DAO can also ensure that the sharpness is low enough to avoid any
issues.

Curve.Finance - Curve ETH/sETH - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Code CorrectedReentrancies

Low -Severity Findings 3

• Code CorrectedRedundant Use of RATES and PRECISION

• Code Corrected_xp and _xp_mem Redundant Array Access

• Code Correctedget_D Should Handle the Case of Non-convergence

6.1 Reentrancies
Security Medium Version 1 Code Corrected

1. During the execution of remove_liquidity and remove_liquidity_imbalance multiple asset
transfers are made. One of these assets is ETH, while the others are ERC-20 tokens. The transfer
of ETH can lead to the following reentrancy. Through the transfer of ETH, the execution might
reenter the contract and call donate_admin_fees. Note that this requires owner privileges. Inside
donate_admin_fees, the internal balances mapping for the ERC-20 tokens will be updated as
follows:

self.balances[i] = ERC20(coin).balanceOf(self)

This assignment is incorrect in this context as the contract still holds the tokens that are about to be
transferred due to the removed liquidity. Hence, after the transaction is complete:
self.balances[i] > ERC20(coin).balanceOf(self). This breaks an important invariant in
the contract.

2. During the call to withdraw_admin_fees an ETH transfer takes place. The transfer of ETH can
lead to the following reentrancy. Through the transfer of ETH, the execution might reenter the
contract and call donate_admin_fees. Note that this requires owner privileges, but these were
already needed for withdraw_admin_fees. As a result, the admin fees for some of the coins will
be donated while the admin fees for other coins will be withdrawn, leading to a state that is only
reachable through a reentrancy.

3. Certain admin functions have no reentrancy protection. Hence, they can be called in a reentrancy
from any of the functions that transfers ETH. However, for those reentrancies the only effects are
incorrectly ordered events. As an example, a NewFee event could be emitted in between multiple
events belonging to a remove_liquidity call.

Code corrected: Additional Reentrancy Guards were added. These now also cover the functions
donate_admin_fees and apply_new_fee among others.

Curve.Finance - Curve ETH/sETH - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6.2 Redundant Use of RATES and PRECISION
Design Low Version 1 Code Corrected

RATES is a constant vector containing in all cells the value 10**18. PRECISION is a constant of value
10**18.

There are cases, such as in exchange, where the value of a cell of RATES is divided by PRECISION.
This division is redundant.

rates: uint256[N_COINS] = RATES
Both multiplication with rates[i] and division with PRECISION can be avoided
x: uint256 = xp[i] + dx * rates[i] / PRECISION

Code corrected: The code was changed accordingly to remove the redundancies and to save gas.

6.3 _xp and _xp_mem Redundant Array Access
Design Low Version 1 Code Corrected

In both _xp and _xp_mem the array results is initialized with the array RATES. However, results
later ends up equal to self.balance. This is because of the multiplication (with result[i]) and a
redundant division (with LENDING_PRECISION). Note, that RATES equals to LENDING_PRECISION for
all i. In the general case this code is useful, however for this token pair, it provides no additional value.
RATES and LENDING_PRECISION are constants, the gas overhead is fairly low.

result: uint256[N_COINS] = RATES
for i in range(N_COINS):
 result[i] = result[i] * self.balances[i] / LENDING_PRECISION
return result

Code corrected: The code was changed accordingly to remove the redundancy and to save gas.

6.4 get_D Should Handle the Case of
Non-convergence
Correctness Low Version 1 Code Corrected

The calculation of the invariant D is limited to 255 steps. If there is no convergence then a wrong invariant
is returned. The invariant is used to mint liquidity provider tokens. Thus, incorrect number of tokens can
be minted. For the case of non-convergence, a verification step of the computed solution could be added.

Code corrected: The new implementation reverts in case of non-convergence. This ensures that no
faulty results are used for further computation.

Curve.Finance - Curve ETH/sETH - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues.

7.1 Content of Events
Note Version 2

The events RemoveLiquidityImbalance and AddLiquidity contain the value D1 which represents
the intermediate calculation of the invariant. Including D2 might be more helpful.

The event RemoveLiquidityOne does not include the information which coin was removed from
liquidity. That might be relevant information.

7.2 Fee Avoidance
Note Version 1

It is theoretically possible to avoid fee payments completely by repeatedly exchanging, adding or
removing such small amounts that fees are zero due to arithmetic errors. This results in a loss of fees for
both liquidity providers and admins. However, in almost all cases the saved fees will be
overcompensated by the additional gas costs. Hence, such a scenario would only be realistic in the
context of Zero-Gasprice Transactions.

7.3 Incentive to Remove Liquidity
Note Version 1

There might be an incentive for liquidity providers to remove liquidity while the amplification factor is
ramped down. In case of a really imbalanced pool and a very rapid ramping down of the amplification
factor, the following sequence might leave the liquidity provider with more liquidity tokens that they
started with:

1. Remove liquidity by withdrawing only the non-scarce asset

2. Wait for the ramping to continue

3. Re-add the removed asset to regain liquidity tokens

In case of a very imbalanced pool and a sharp ramp, the liquidity provider could end up with 0.14% more
liquidity tokens than they started with by waiting just ten minutes in step 2. This, however, only works if no
other transactions take place inside the pool.

7.4 Inefficiencies When Removing Single Coin
Note Version 1

When removing just a single coin from the pool liquidity, the remove_liquidity_one_coin function
can be used. However, this function in certain cases is less efficient than using the
remove_liquidity_imbalance function and just setting all values except for the desired one to zero.
In our limited experiments, the biggest difference occurred when remove_liquidity_imbalance
provided 0.00008% additionally withdrawn assets.

Curve.Finance - Curve ETH/sETH - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

Hence, the difference is very small and mostly negligible. Furthermore, the
remove_liquidity_one_coin function is generally expected to have lower gas costs. Finally, it is
important to note that the fee structure is different for the two functions as
remove_liquidity_one_coin will only pay fees in the withdrawn coin, while
remove_liquidity_one_coin will pay a roughly equivalent amount of fees in all coins.

Curve.Finance - Curve ETH/sETH - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.3 Modifying Liquidity
	2.4 Determining the invariant D
	2.5 Setting and Updating the Amplification Coefficient A
	2.6 Fees
	2.7 Administrator actions
	2.8 Killed (Frozen) Contract Functionalities

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Certain Inputs Unchecked in Constructor
	5.2 Ramping Down Might Incentivize Delayed Liquidity

	6 Resolved Findings
	6.1 Reentrancies
	6.2 Redundant Use of RATES and PRECISION
	6.3 _xp and _xp_mem Redundant Array Access
	6.4 get_D Should Handle the Case of Non-convergence

	7 Notes
	7.1 Content of Events
	7.2 Fee Avoidance
	7.3 Incentive to Remove Liquidity
	7.4 Inefficiencies When Removing Single Coin

